PHYSICS DEPARTMENT MINOR I, PHL-110, FIELD AND WAVES (September 6, 2004)

Note: Attempt all questions:

Max. Marks: 25 Time: Thour

- 1. (i) A thick metal sheet occupies half space (x < 0). The x > 0 space is vacuum. A charge Q is placed at (d,0,0). What would be the direction of E at the metal surface at point (0, 2d, 0)?
- (ii) A charged particle of charge Q and mass m is initially at rest with height y = h above the ground. It falls under gravity $(-g_{\hat{y}})$ and a static magnetic field $B_0(\hat{z})$. What would be the kinetic energy KE of the particle when it touches the ground?
- (iii) A metallic sphere of radius R, carrying a charge Q is surrounded by a thick spherical concentric metallic shell with inner radius as 'a' and outer radius as 'b'. If the shell carries no net charge, what is the surface charge densities at r = a, b and R.
- (iv) Consider a closed hemispherical surface of radius R and with its base lying in x-y plane. If it lies in a uniform magnetic $B = B_0 \ \hat{z}$, write the value of $\oint \vec{B} \cdot d\vec{a}$.
- (v) Which one of the following is an impossible electrostatic field?

$$\vec{E} = k[xy\hat{x} + 2yz\hat{y} + 3xz\hat{z}];$$

$$\vec{E} = k[y^2\hat{x} + (2xy + z^2)\hat{y} + 2yz\hat{z}].$$

Here k is a constant with the appropriate units.

- 2. A thick spherical shell (inner radius 'a' and outer radius 'b') is made of a dielectric material with a frozen-in polarization $\vec{P}(r) = \frac{k}{r}\hat{r}$, where k is a constant and r is the distance from the center Obtain
 - (a) total surface charge at surfaces r = a, and r = b.
 - (b) volume charge density ρ and the electric field at a point r so that a < r < b.
- 3. (i) In a region of space $\hat{E} = 4x\hat{x} + 4y\hat{y} + 6\hat{z}$. Obtain the potential difference between points (1.1.1) and (2.2.2). Also calculate the charge enclosed within a sphere of radius 1m with its center at the origin.
- (ii) A spherical conductor of radius 'a' carries a charge Q. It is surrounded by a linear dielectric material of susceptibility χ_e , out to radius b. Find the energy of the configuration.
- 4. (i) Starting with Biot-savart law, show that $\nabla .\vec{B} = 0$. (ii) A long conducting cylinder of radius R carries a current density $\vec{J} = \hat{z}.J_0 \left\{ -r^2/R^2 \right\}$ along its axis. Obtain the magnetic field and vector potential at r > R.

 $k_{2} - \frac{1}{6} \sqrt{2}$ $k_{2} - \frac{1}{6} \sqrt{2} = \frac{2}{12} \sqrt{2} = \frac{1}{2} \sqrt{2} = \frac{$